
کنستانتین اف. پیلز، یوسف محمود، لنارت هیم-Research منتشر شده در 28 ژانویه 2025
دورههای آموزشی بزرگتر و استقرار گسترده سیستمهای هوش مصنوعی (AI) آینده ممکن است نیاز به افزایش سریع منابع محاسباتی داشته باشد که به مقادیر بیسابقهای نیرو نیاز دارد. در این گزارش، نویسندگان دو روند نمایی در محاسبات هوش مصنوعی را برای تخمین تقاضای برق مرکز داده هوش مصنوعی و ارزیابی پیامدهای ژئوپلیتیکی آن برون یابی می کنند. آنها دریافتند که در سطح جهان، مراکز داده هوش مصنوعی ممکن است در سال 2025 به ده گیگاوات (GW) ظرفیت انرژی اضافی نیاز داشته باشند که بیشتر از کل ظرفیت انرژی ایالت یوتا است. اگر رشد تصاعدی در عرضه تراشه ادامه یابد، مراکز داده هوش مصنوعی تا سال 2027 در مجموع به 68 گیگاوات نیاز خواهند داشت که تقریباً دوبرابر نیاز برق مرکز داده جهانی از سال 2022 و نزدیک به ظرفیت کل برق 86 گیگاواتی کالیفرنیا در سال 2022 است.
با توجه به رشد محاسباتی آموزشی اخیر، مراکز داده میزبان برنامه های آموزشی بزرگ چالش خاصی را ایجاد می کنند. اگر روند فعلی مقیاسبندی محاسباتی آموزشی ادامه داشته باشد، آموزش میتواند تا سال 2028 به 1 گیگاوات در یک مکان واحد و 8 گیگاوات – معادل هشت راکتور هستهای – تا سال 2030 نیاز داشته باشد.
ایالات متحده در مراکز داده و محاسبات هوش مصنوعی در جهان پیشتاز است، اما تقاضای تصاعدی این صنعت را برای یافتن ظرفیت کافی انرژی برای ساخت سریع مراکز داده جدید با مشکل مواجه میکند. عدم رسیدگی به تنگناها ممکن است شرکتهای آمریکایی را مجبور کند که زیرساختهای هوش مصنوعی را به خارج از کشور منتقل کنند، که به طور بالقوه مزیت رقابتی ایالات متحده در محاسبات و هوش مصنوعی را به خطر میاندازد و خطر سرقت مالکیت معنوی را افزایش میدهد.
تحقیقات بیشتری برای ارزیابی تنگناها برای ساخت مرکز داده ایالات متحده و شناسایی راهحلهایی مورد نیاز است، که ممکن است شامل سادهسازی مجوز برای تولید برق، زیرساختهای انتقال و ساخت مرکز داده باشد.
یافته های کلیدی
- رشد تصاعدی در محاسبات هوش مصنوعی منجر به تقاضای انرژی بیسابقهای میشود که میتواند زیرساختهای موجود را تحت تأثیر قرار دهد.
- تقاضای جهانی برق مرکز داده هوش مصنوعی می تواند تا سال 2027 به 68 گیگاوات و تا سال 2030 به 327 گیگاوات برسد، در حالی که ظرفیت کل مرکز داده جهانی تنها 88 گیگاوات در سال 2022 است.
- اجرای تمرینات هوش مصنوعی فردی میتواند تا سال 2028 به 1 گیگاوات در یک مکان واحد و تا سال 2030 به 8 گیگاوات نیاز داشته باشد، اگرچه الگوریتمهای آموزشی غیرمتمرکز میتوانند این انرژی مورد نیاز را در مکانها توزیع کنند.
- چالشهای مجاز برای زیرساختهای برق و مراکز داده باعث تاخیرهای قابل توجهی در پروژههای مرکز داده میشود
- تولید ناکافی برق زمان انتظار برای اتصالات شبکه را افزایش می دهد، به طوری که درخواست اتصال به شبکه در مناطق کلیدی مانند ویرجینیا چهار تا هفت سال طول می کشد.
- پروژه های خطوط انتقال با فرآیندهای پیچیده مجوز چند ایالتی و مخالفت های محلی مواجه هستند که تحویل نیرو به سایت های مناسب را به تاخیر می اندازد.
- مراکز داده با مجوزهای محلی و ایالتی، به ویژه برای تولید کننده های پشتیبان در محل و ارزیابی اثرات زیست محیطی، مشکل دارند.
- تعهدات و مقررات زیستمحیطی استفاده از منابع برق در دسترس را محدود میکند و اتکا به گزینههای تجدیدپذیر با مقیاس سختتر را وادار میکند.
- فقدان زیرساخت مرکز داده در ایالات متحده می تواند ساخت و ساز را به کشورهای دیگر منتقل کند.
- شرکتهای آمریکایی در حال بررسی توسعه در کشورهایی هستند که در دسترس بودن برق بهتر و مجوزهای سریعتر را ارائه میدهند.
کشورهایی که دسترسی محاسباتی بیشتری دارند، میتوانند هوش مصنوعی را در مقیاس بزرگتر به کار گیرند و به طور بالقوه مزایای اقتصادی و نظامی به دست آورند.همانطور که مدل های هوش مصنوعی توانمندتر می شوند، محاسبات ایمن به ویژه در خارج از کشور چالش برانگیزتر می شود. زیرساخت میزبان مدل های پیشرفته هوش مصنوعی احتمالا با حملات سایبری پیچیده ای روبرو خواهد شد. این خطرات زمانی که محاسبات در خارج از مرزهای ایالات متحده واقع می شود، جایی که نظارت محدود است، به طور قابل توجهی افزایش می یابد.
توصیه ها
- مدل عرضه شبکه برق آینده در برابر تقاضای مرکز داده، در نظر گرفتن الزامات قابلیت اطمینان و اثربخشی مصرف برق.
- پیشرفتهای کارایی تحقیقاتی که میتواند انرژی مورد نیاز برای هوش مصنوعی را کاهش دهد، مانند تراشههای هوش مصنوعی با انرژی کارآمدتر.
- تنگناهای مقیاس بندی را محاسبه کنید، از جمله محدودیت های تأخیر و اثرات کمیابی داده.
- تجزیه و تحلیل چگونگی تأثیر فرآیندهای بررسی محیطی و الزامات مجوز بر تولید و زیرساخت انتقال نیرو.
- منابع انرژی در حال ظهور را برای بارهای کاری هوش مصنوعی، از جمله راکتورهای کوچک مدولار و انرژی زمین گرمایی، ارزیابی شود.
- ارزیابی شود که چگونه مقامات فدرال، مانند قانون تولید دفاع، می توانند کمبود انرژی را برطرف کنند.
- بررسی ظرفیت بخش خصوصی برای تامین مالی و توسعه زیرساخت های برق لازم.