2 سپتامبر 2024 -توسط آزمایشگاه Cold Spring Harbor-اعتبار: دامنه عمومی Pixabay/CC0
وقتی از یک برنامه اشتراک گذاری بخواهید ماشینی برای شما پیدا کند، کامپیوترهای شرکت دست به کار می شوند. آنها می دانند که شما می خواهید سریع به مقصد برسید. آنها می دانند که شما تنها کاربری نیستید که نیاز به سواری دارد. و آنها میدانند که رانندگان میخواهند با سوار کردن شخصی در نزدیکی زمان بیکاری را به حداقل برسانند. پروفسور ساکت ناولاخا، دانشیار آزمایشگاه Cold Spring Harbor، می گوید که وظیفه کامپیوتر این است که رانندگان را با سواران به گونه ای جفت کند که شادی همه را به حداکثر برساند.
دانشمندان کامپیوتر مانند ناولاخا به این تطابق دوجانبه می گویند. این همان وظیفه ای است که توسط سیستم هایی انجام می شود که اهداکنندگان عضو را با نامزدهای پیوند، دانشجویان پزشکی با برنامه های رزیدنتی، و تبلیغ کنندگان دارای جایگاه های تبلیغاتی جفت می کنند. به این ترتیب، موضوع مطالعه شدید است.
ناولاخا می گوید: «این احتمالاً یکی از 10 مشکل معروف در علوم رایانه است.
اکنون، او راهی برای انجام بهتر این کار با استفاده از بیولوژی پیدا کرده است. ناولاخا یک مشکل تطبیق دو بخشی را در سیم کشی سیستم عصبی تشخیص داد. در حیوانات بالغ، هر یک از رشته های عضلانی بدن دقیقاً با یک نورون جفت می شود که حرکت آن را کنترل می کند. با این حال، در اوایل زندگی، هر فیبر توسط نورون های بسیاری مورد هدف قرار می گیرد. برای اینکه یک حیوان به طور موثر حرکت کند، اتصالات اضافی باید هرس شوند. بنابراین، کدام مسابقات برای ماندگاری ساخته شده اند؟
سیستم عصبی راه حل کارآمدی دارد. ناولاخا توضیح میدهد که نورونهایی که ابتدا به یک فیبر عضلانی متصل هستند، با استفاده از انتقالدهندههای عصبی بهعنوان منابع «مناقصه» با یکدیگر رقابت میکنند تا تطابق خود را حفظ کنند. نورونهایی که این حراج بیولوژیکی را از دست میدهند، میتوانند انتقالدهندههای عصبی خود را بگیرند و برای فیبرهای دیگر پیشنهاد دهند. به این ترتیب، هر نورون و فیبر در نهایت با یک شریک به هم می پیوندد.
این امرنشان می دهد که چگونه نورون های حرکتی و فیبرهای عضلانی بدن قبل از (چپ) و بعد از (راست) هرس رشدی به هم متصل می شوند. ناولاخا توضیح می دهد: «هر لکه مربوط به یک واحد موتوری است. واحدهای حرکتی کوچک بسیار فعال هستند، ابتدا در طول انقباض عضلانی به کار گرفته میشوند (زیرا نورونهای آنها آستانه شلیک پایینی دارند)، و نیروی کمی را ارائه میکنند. و نیروهای قوی تری ارائه کنند.”
نولاخا راهی برای اجرای این استراتژی تطبیق در خارج از سیستم عصبی ابداع کرد. او می گوید: «این یک الگوریتم ساده است..این فقط دو معادله است. یکی رقابت بین نورون های متصل به یک فیبر است و دو معادله تخصیص مجدد منابع است.” این کار در Proceedings of the National Academy of Sciences منتشر شده است.
الگوریتم الهام گرفته از علوم اعصاب که در برابر بهترین برنامه های تطبیق دوبخشی موجود است، بسیار خوب عمل می کند. جفتهای تقریباً بهینه ایجاد میکند و مهمانیهای کمتری را بیهمتا میگذارد. در برنامههای روزمره، این میتواند به معنای زمان انتظار کوتاهتر برای مسافرانی باشد که با استفاده از آنها به اشتراک گذاشته میشوند و بیمارستانهای کمتری بدون دستیاران پزشکی.
نولاخا به مزیت دیگری نیز اشاره می کند. الگوریتم جدید حریم خصوصی را حفظ می کند. اکثر سیستمهای تطبیق دو بخشی نیاز دارند که اطلاعات مربوطه برای پردازش به یک سرور مرکزی منتقل شود. اما در بسیاری از موارد – از حراج های آنلاین گرفته تا تطبیق اعضای اهدا کننده – ممکن است رویکرد توزیع شده ترجیح داده شود. با کاربردهای بالقوه بیشماری، ناولاخا امیدوار است که دیگران الگوریتم جدید را برای ابزارهای خودشان تطبیق دهند.
او می افزاید: «این یک مثال عالی از این است که چگونه مطالعه مدارهای عصبی می تواند الگوریتم های جدیدی را برای مسائل مهم هوش مصنوعی آشکار کند.